대학원 시절 밤낮으로 실험에 매달려 연구에 몰두하고 있다가 한 학기에 한두 번 있는 실험실 회식은 한 줄기 빛이었다. 모처럼 실험과 연구의 긴장에서 해방돼 마음 편하게 동료 대학원생은 물론 지도교수까지 일상을 주제로 이야기하며 다양한 음식을 즐길 수 있기 때문이다. 배를 꽉 채워 회식이 끝날 때쯤이면 내 지도교수님은 꼭 이런 말씀을 하셨다. “이제 녹말로 입가심해야지. 누구 면이나 밥 먹을 사람?” 음식이 더 들어갈 공간도 없는데 웬 녹말?
우리가 먹는 음식에는 녹말이 많이 들어 있다. 그렇기에 우리 입맛에 익숙한 성분이기도 하다. 쌀, 보리, 밀, 호밀, 옥수수, 감자, 고구마 등에는 에너지를 저장한 녹말이 풍부하다. 이것을 재료로 밥, 다양한 종류의 빵, 시리얼, 피자 도우 등 많은 먹거리가 만들어진다. 녹말은 대개 평균적으로 식사량의 반 이상을 차지한다.
사람의 몸은 대략 물 66%, 단백질 16%, 지질 13%, 무기염류 4%, 탄수화물 0.6%, 기타 0.4%로 구성되어 있다. 녹말을 포함한 탄수화물은 사람의 몸 전체 구성 성분의 1%에도 미치지 못한다.
그 이유는 탄수화물이 우리 몸에서 에너지로 가장 먼저 소모되는 영양소이기 때문이다. 녹말은 포도당 수천개가 결합해 만들어졌다. 녹말을 섭취하면 입과 소장에 있는 소화효소가 녹말을 포도당으로 분해한다. 이 포도당들은 혈관을 통해 개별 세포로 전달된다. 이 세포들은 포도당을 생물들이 소모하는 에너지 형태인 ATP로 변환시키고, 일부는 이산화탄소로 바꾸어 몸 밖으로 내보낸다.
식생활이 서구화됐다지만 여전히 우리 주식은 쌀이다. 쌀은 찹쌀과 멥쌀이 있는데 찰기가 있는 찹쌀은 찰벼에서, 상대적으로 찰기가 덜한 멥쌀은 메벼에 나온다. 같은 벼인데 이러한 차이가 생기는 이유는 녹말을 구성하는 포도당의 배열 때문이다. 포도당이 한 방향으로만 결합하면 곧게 뻗친 아밀로스라는 구조가 생기고 두 방향 이상으로 결합하면 가지가 많이 달린 아밀로펙틴이라는 구조가 생긴다. 아밀로스와 아밀로펙틴이 어우러져 녹말을 만든다. 녹말에서 가지가 많이 달린 아밀로펙틴의 비중이 커지면 가지에 아밀로펙틴들끼리 서로 더 많이 얽혀 녹말은 끈적끈적해진다. 반대로 아밀로스의 비중이 커지면 찰기가 감소한다. 전 세계 쌀 생산량의 90%에 해당하는 안남미(인디카)는 아밀로스의 비중이 25% 정도로 우리가 섭취하는 쌀(자포니카)의 아밀로스 비중 20%보다 많아 푸석하게 느껴진다. 또 포도당 수천개가 결합하는 방식이 조금 바뀌면 글리코겐이 만들어진다. 녹말의 아밀로펙틴과 비슷한 글리코겐은 동물에서만 만들 수 있어 ‘동물 녹말’이라고도 한다. 글리코겐도 녹말처럼 에너지 저장 형태이다. 우리에게 친숙한 지방은 탄수화물의 장기적인 저장 형태인데 반해 글리코겐은 단기간 저장하는 형태여서 에너지가 필요할 때 쉽게 사용할 수 있다.
글리코겐은 지구력이 필요한 운동선수들이 ‘당충전’에 응용한다. ‘당충전’이란 운동 시합 때 더 오랫동안 힘을 유지하거나 피로도를 늦추려고 글리코겐을 평소의 2~3배 정도로 늘리는 것을 말한다.
‘당충전’은 두 단계로 이루어진다. 우선 경기 시작 약 1주일 전에 탄수화물을 섭취하지 않은 채 지칠 때까지 운동해서 몸에 있는 글리코겐을 고갈시킨다. 그다음 경기 이틀 전에 운동은 줄이면서 탄수화물을 많이 섭취하는 것이다. 그렇게 하면 시합 당일에 사용하게 될 에너지의 저장형태인 글리코겐이 간과 근육에 쌓이게 된다.
커다란 탄수화물 분자에는 녹말과 글리코겐 외에 여러 중요한 역할을 하는 셀룰로오스도 있다. 이 세 가지 모두 포도당을 이용해 결합 방식을 달리하면서 만들어진다. 이렇게 생물은 동일한 재료를 사용해서 쓰임새가 다양한 여러 가지를 만들어낸다. 경제성과 다양성을 갖추고 있는 것이다. 홍수같이 밀려오는 많은 일 속에서 삶을 경영해야 하는 우리가 눈여겨볼 대목이다.
장수철 연세대 학부대학 교수
그 이유는 탄수화물이 우리 몸에서 에너지로 가장 먼저 소모되는 영양소이기 때문이다. 녹말은 포도당 수천개가 결합해 만들어졌다. 녹말을 섭취하면 입과 소장에 있는 소화효소가 녹말을 포도당으로 분해한다. 이 포도당들은 혈관을 통해 개별 세포로 전달된다. 이 세포들은 포도당을 생물들이 소모하는 에너지 형태인 ATP로 변환시키고, 일부는 이산화탄소로 바꾸어 몸 밖으로 내보낸다.
식생활이 서구화됐다지만 여전히 우리 주식은 쌀이다. 쌀은 찹쌀과 멥쌀이 있는데 찰기가 있는 찹쌀은 찰벼에서, 상대적으로 찰기가 덜한 멥쌀은 메벼에 나온다. 같은 벼인데 이러한 차이가 생기는 이유는 녹말을 구성하는 포도당의 배열 때문이다. 포도당이 한 방향으로만 결합하면 곧게 뻗친 아밀로스라는 구조가 생기고 두 방향 이상으로 결합하면 가지가 많이 달린 아밀로펙틴이라는 구조가 생긴다. 아밀로스와 아밀로펙틴이 어우러져 녹말을 만든다. 녹말에서 가지가 많이 달린 아밀로펙틴의 비중이 커지면 가지에 아밀로펙틴들끼리 서로 더 많이 얽혀 녹말은 끈적끈적해진다. 반대로 아밀로스의 비중이 커지면 찰기가 감소한다. 전 세계 쌀 생산량의 90%에 해당하는 안남미(인디카)는 아밀로스의 비중이 25% 정도로 우리가 섭취하는 쌀(자포니카)의 아밀로스 비중 20%보다 많아 푸석하게 느껴진다. 또 포도당 수천개가 결합하는 방식이 조금 바뀌면 글리코겐이 만들어진다. 녹말의 아밀로펙틴과 비슷한 글리코겐은 동물에서만 만들 수 있어 ‘동물 녹말’이라고도 한다. 글리코겐도 녹말처럼 에너지 저장 형태이다. 우리에게 친숙한 지방은 탄수화물의 장기적인 저장 형태인데 반해 글리코겐은 단기간 저장하는 형태여서 에너지가 필요할 때 쉽게 사용할 수 있다.
글리코겐은 지구력이 필요한 운동선수들이 ‘당충전’에 응용한다. ‘당충전’이란 운동 시합 때 더 오랫동안 힘을 유지하거나 피로도를 늦추려고 글리코겐을 평소의 2~3배 정도로 늘리는 것을 말한다.
‘당충전’은 두 단계로 이루어진다. 우선 경기 시작 약 1주일 전에 탄수화물을 섭취하지 않은 채 지칠 때까지 운동해서 몸에 있는 글리코겐을 고갈시킨다. 그다음 경기 이틀 전에 운동은 줄이면서 탄수화물을 많이 섭취하는 것이다. 그렇게 하면 시합 당일에 사용하게 될 에너지의 저장형태인 글리코겐이 간과 근육에 쌓이게 된다.
커다란 탄수화물 분자에는 녹말과 글리코겐 외에 여러 중요한 역할을 하는 셀룰로오스도 있다. 이 세 가지 모두 포도당을 이용해 결합 방식을 달리하면서 만들어진다. 이렇게 생물은 동일한 재료를 사용해서 쓰임새가 다양한 여러 가지를 만들어낸다. 경제성과 다양성을 갖추고 있는 것이다. 홍수같이 밀려오는 많은 일 속에서 삶을 경영해야 하는 우리가 눈여겨볼 대목이다.
2018-01-02 29면
Copyright ⓒ 서울신문. All rights reserved. 무단 전재-재배포, AI 학습 및 활용 금지